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Short Biography of Benjamin Omell

• Post-Doctoral Fellow in the Department of Chemical 
Engineering at West Virginia University

• PhD from Illinois Institute of Technology, Chicago
• Research interest is in the area of steady-state and 

dynamic modeling and advanced process control of 
energy-generating and associated processes

• Member of AICHE
• Hobbies- Biking, hiking
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CO2 Capture & Compression Systems
Coupled with the Steam Cycle

• Solid-sorbent systems 
are energetically superior 
to typical MEA-based 
solvent systems

• CCS system requires 
power and steam

• Dynamics are important 
during load-following
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CO2 Compression 
System

Moving Bed 
(MB) 

Regenerator
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Goals and Objectives

• Develop accurate and flexible steady-state and dynamic solid 
sorbent models for CO2 capture
– BFB and MB adsorber/regenerator
– Solids heat exchangers
– CO2 compression 
– Balance of the plant

• Create toolset to simplify implementation of advance control 
strategies that can perform efficiently in the presence of unmodeled
disturbances, noisy measurements, and unmeasured variables

• Use these models and tools for optimization, transient studies, and 
control system design as part of DOE’s Carbon Capture Simulation 
Initiative (CCSI)
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CCSI Toolset Framework
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Challenge: Limitations in Previous Bubbling 
Fluidized Bed Models

• Typical simplifications to facilitate 
analytic solutions
– Isothermal
– Simplistic reaction kinetics and 

transport
– Steady-state
– Embedded heater/cooler neglected

• Limited support in commercial tools

• Minimal application to CO2 capture 
in literature
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A Flexible BFB Model

• Flexible configurations
– Dynamic or steady-state
– Adsorber or regenerator
– Under/overflow
– Integrated heat exchanger for 

heating or cooling

• Supports complex reaction kinetics

• Compatible with CCSI uncertainty 
quantification (UQ) tools

1-D, two-phase, pressure-driven and non-isothermal models 
developed in both Aspen Custom Modeler (ACM) and gPROMS
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Model Development

• Gaseous species : CO2, N2, H2O
• Solid phase components: bicarbonate, carbamate, and 

physisorbed water.
• Transient species conservation and energy balance 

equations for both gas and solid phases in all three 
regions.
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Single-Stage BFB Model: Steady-State Results
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Dynamic Results – Increase Inlet Gas
Flow by 20.6%

Gas CO2 Concentration Gas H2O Concentration
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Challenge: Limitations of Existing
Moving Bed Models

 Very few references in literature, little 
application to CO2 capture

 Previous applications in literature include
 MB furnaces for iron pellet reduction
 Dryers
 Non-catalytic gas-solid reactions

 Lack of mathematical model with large 
amount of heat transfer for solid sorbent 
regeneration

 Embedded heater/cooler not modeled
 Mainly steady-state model
 Hardly any model available in the 

commercial software

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out
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CCSI’s Moving Bed Models

 Flexible dynamic and steady-state 
models
 Integrated heat exchanger that can be 

used interchangeably for heating or 
cooling

 Flexible enough for adsorber 
application

A1-D, two-phase, pressure-driven and non-isothermal 
regenerator model developed in both ACM and gPROMS

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out
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Step Test: Sorbent Temperature
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Multi-Stage Moving Bed Design 
to Overcome Fluidization Concerns

Concern
Twenty-seven 9 m diameter MB 
regenerators in parallel required to 
maintain flow in moving bed regime*

Solution: Multi-Stage Moving Bed 
Regenerator
• Some CO2 (gas) removed between 

stages
• Reduced gas flowrate at the top of the 

MB
• Requires an advanced control strategy

Solid in

Stage 1

Stage 2

HX steam

downcomer

CO2 draw-off

Steam Regenerated solids

CO2 to compressor

*Assumptions for preliminary analysis: 
12% CO2 flue gas @ 2000 mol/s with 
90% capture rate
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Challenge: Limitations of Existing 
Compression Systems Models

• Has been mostly developed for non-CO2 systems
• For CO2 systems, developed mainly for sCO2 cycles

– Pressure ratio of 1 to 2.6 (about 150 for CCS)
– Fixed inventory (variable for CCS)
– Composition change, especially water content, is not a 

major concern for sCO2 cycles
• Typically steady-state

– Dynamics are essential for load-following in power 
systems

• Lack of performance curves for CO2 systems
• Surge detection and control algorithms hardly studied for 

these systems
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CCSI CO2 Compression System Model
Dynamic model of multi-stage integral-gear compression system

Surge Control Valves

TEG Regenerator & Absorber
Flash Vessels

Surge detection and control algorithm also developed
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Integrated Model Enables Investigation
of Entire Process Dynamics

Integrated Model in 
gPROMS

(also ACM version)
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Ramp In Flue Gas

Flow into compressor train
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Dynamics of Integrated Process

• Transient effect of the capture 
and compression process on 
the power plant and vice versa

• Can result in temporal variation 
in CO2 capture target-different 
time constants depending on 
the type of the bed

• CCSI tools DRM-builder and 
APC toolset can improve 
system dynamics
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CCSI Toolset Framework
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Motivation

• High-fidelity dynamic models (e.g. ACM dynamic models) 
are computationally expensive
– Need to solve many Differential Algebraic Equations 

(DAEs)
– May require small time steps due to stiffness of DAEs
– Not fast enough to catch up with real time

• Dynamic reduced models (D-RMs)
– Speed up the dynamic simulations
– Capture dynamic systems with reasonable accuracy
– Can be used for Advanced Process Control (APC) and 

Real Time Optimization (RTO)
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D-RM Builder Workflow

Generate D-RM 
Based on 

Simulation 
Results

1u

2u
1

2

3

4

I/O Variable 
Selection

GUI for Configuring 
Inputs/Outputs GUI for Configuring 

Training Sequence
Run Training

Sequence

Analyze Reduced Model using UQ Tools, 
Validation Sets, Plots

D-RM in Form of 
MATLAB Code

SinterConfigGUI
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D-RM for the BFB Adsorber

 D-RM generated based on open-loop ACM model
 Inputs:

• Flue gas flow rate: 6,075 to 7,425 kmol/hr
• Sorbent flow rate: 540,000 to 660,000 kg/hr

 Output:
• CO2 removal (Fraction of CO2 in flue gas removed)

 DABNet* model with pole values optimized
 CPU time required for ACM simulations

• Approximately 50 minutes for 2500 sampling steps 
(Sampling time interval at 0.1 second)

*Sentoni, G.B., L.T. Biegler, J.B. Guiver and H. Zhao, “State-Space Nonlinear Process Modeling: Identification and Universality,” 
AIChE Journal, 44(10), 2229-2239, 1998.
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Validation Input Data

Time (sec)

So
rb

en
t F

lo
w

 
(k

g/
hr

)
Fl

ue
 G

as
 F

lo
w

 
(k

m
ol

/h
r)

ACM

D-RM

24



58th Annual ISA POWID Symposium, 7-11 June 2015, Kansas City, Missouri

Validation Output Data
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CCSI Toolset Framework
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APC Framework’s Capabilities

Utilize proven techniques from control relevant studies in literature and combine 
them synergistically in an efficient and robust process control framework. 

DABNet-based Nonlinear 
System Identification

Analytical Jacobians and 
Hessians

Multiple Model Predictive 
Control (MMPC)

Auto Covariance Estimation 
(ALS Technique)

IPOPT-based Optimization 
Technique 

UKF-based State Estimation

Enhanced User-Friendly GUI

Poor control response for 
highly nonlinear plants using 
traditional PID or MPC

Nonlinear MPC becomes 
computationally expensive for 
large-scale plant

Noisy measurements along 
with unmodeled disturbance 
and unmeasured variables 
provides poor control 
response

Controller is too sensitive to 
user-provided tuning 
parameters (inexperienced 
operators)

Typical APC interface 
overwhelms the operators 
(setting up control-model, 
tuning parameters, etc.)
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Performance Comparison on 2-Stage 
BFB Adsorber (ACM)

Controller responses to drastic plant-load changes –
Comparison with standard MPC controller

Large changes in 
flue-gas flowrate 

(input-disturbance)

Active 
Constraints

Better disturbance 
rejection

Note: Max. Control Calculation Time << Sample Time (Ts = 20 sec), Real-Time Operation with APC

Controller Parameters

Prediction Horizon = 50 
Control Horizon = 10

Wu/Wy = 0.2

Cumulative 
Control 

Calculation 
Time (sec)

Max Control 
Calculation 
Time (sec)

Total 
Simulation 
Time (min)

Conventional 
MPC 0.019 9.54 0.33 18.39

DAB-Net 
NMPC 0.007 19.97 3.43 18.92

Computational Cost
Cumulative 

ResidualAlgorithm
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Performance Comparison on 2-Stage 
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Benefits of APC 
Framework
1. Low residuals – tracks 

setpoint better over 
time

2. Low sensitivity for 
user-provided tuning 
parameters (Wu/Wy in 
this case)

Sensitivity of Control Performance to Tuning Parameter –
Comparison with standard MPC controller
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 Developed high-fidelity steady-state and dynamic solid 
sorbent models for CO2 capture

 Utilization of DRM-builder tool to generate reduced 
ordered models 
 Use reduced order model to generate control strategy with 

APC framework to handle moving boundary problem of 
multi-stage moving bed regenerator  

 APC performance is relatively insensitive to tuning 
parameters and results in efficient disturbance rejection 
and load-following characteristics

Summary 
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Thank You
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Optimized Process Developed using CCSI Toolset
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